
SC• COMPUTER COMMAND AND CONTROL COMPANY

2300 CHESTNU I STREET, SUITE 230 - PHILADELPHIA. PA 19103

215-8S4-0555 FAX: 215-854-0665

AD-A284 409 DTIC1111111111111111101111" ELECT E '•S SEP 1 6 1994

FINAL REPORT

REENGINEERING DOD-STD-2167A
REQUIREMENTS SPECIFICATIONS

CONTRACT N00014-92.C.0242
OFFICE OF NAVAL RESEARCH

ATTN: ELIZABETH WALD
CODE ONR-311

DEPARTMENT OF THE NAVY
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5000

AUGUST 1994 This documeni •cq neel cipptoved
tot public relecss anrd -ale: its
&st•i"ution is ui teO t

94-29630

0/7~h

Calved Number NOM4ft-C4 Vhd Rqpwt Reme.mig DOO4T•T..214A qumat Sp.dcalem

TABLE OF CONTENTS

1. Introduction 1

2. Input: The Avionics Software 2

3. Output: Software Unit Map and Software Units 3

4. A Guide to Perusing the Outputs 5

Appendix I Project Publications

Appendix II Examples of Documentation of Software
Units (For Top Two Software Units of Avionics)

LIST OF FIGURES

Figure 1: Avionics Catalog Report. 6

Figure 2: Avionics Software Unit Mapping Summary. 9

Figure 3: Avionics Software Unit Map. 11

Figure 4: Icons, Edges and Legends. 12
Accesion For
NTIS CRA&I

DTIC TAB -

Unannounced .
Justification

Distribution I

Availability Codes

Avail arid I or-
Dist Special

Canwacg Number N00014-92-C0242 Fna Report Reuglomeegtug DOD-STD-2167A Requirhmais SpecOmladom

1. INTRODUCTION

This is the Final Report under contract N00014-92-C-0242. This contract covered work in two
steps:

1. Design of the automatic system for generating DoD-STD-2167A Software
Specifications from the respective software Ada code.

2. Implementation of this system.

The first step was concluded and documented in a technical report titled, "Automatic Reverse
Engineering of Software to Confirm/Update Requirements Specifications", June 1993.

This report describes the second step, of implementing the automatic system and using it to
process the software of an Avionics software system.

The report describes the input Avionics software (Section 2), the output of generated documents
of the Avionics software (Section 3) and a guide to perusing the produced documentation
(Section 4).

The documentation that is produced consists of the following:

1. A catalog report listing the produced files of Software Units (Figure 1).

2. The Software Unit Map Summary (Figure 2). This is a hierarchically
ordered list of all the Software Units in the architecture of the Avionics
software.

3. The Avionics Software Unit Map. This is a hierarchical tree depicting
graphically the Software Unit Avionics architecture (Figure 3.)

4. For each software unit, there are:

a. Comments included in the code.

b. A graphic representation and the respective Ada code. The icons in the

graphic representation are shown in Figure 4.

c. A listing of the Ada code of the software units. The documentation for
the top two software units in the architecture hierarchy are shown in

I

Citrad NmbWr NOUI4-92-C0242 fhaI Report Re.ieuwrg DOD.STDr2167A Reqahraina Spesmcadow

Appendix HI. (A full documentation is available but not included in
this report because of its length).

The work on this contract also resulted in the following publication enclosed in Appendix I,

1. Ahrens, E. Lock and N. Prywes, "The Synthesis of Software Artifacts
with Implementation: Re-creating Requirements Specifications", 1994
Complex Systems Engineering Synthesis and Assessment Technology
Workshop (CESAW 1994), Washington, DC, July 1994.

2. J. Ahrens, E. Lock and N. Prywes, "Technology for Re-Creating
Documentation", 4th Reengineering Forum, Victoria, BC, Canada,
September 1994.

2. Input: The Avionics Software

The Avionics demonstration example is a subset of a helicopter simulation system originally
programmed in Ada. This subset specifically deals with the fly-to-point operation of a helicopter
navigation sub-system. X and Y coordinates are input and a clock pulse relays real-time event
input for calculation of speed, altitude, trajectory, and distance. The Avionics software is
comprised of a series of Ada tasks: one for the clock, one for the simulation, two for input and
output, two for message mailbox handling, and one controller for activating and synchronizing the
other tasks; in total, seven tasks facilitate the actions of the overall system. In this demonstration
example of the Avionics system, there are 842 lines of source Ada code.

3. Output: Software Unit Map and Software Units

The purpose of the Avionics documentation shown below is to illustrate the various components
of the re-engineering transformation process. The system-wide "road-map" is the Catalog Report
(figure 1); this report indicates a particular transformation component and shows its position
within the hierarchy of the transformation unit. A transformation unit is the total code submitted
at one time for processing. During the transformation, criteria for software unit partitioning are
specified to aid in software understanding when the visualization tool is utilized. The Software
Unit Mapping Report (figure 2) identifies the partitioning and encapsulation criteria, the number
of resultant software units, the name of each unit, and each unit's tree code which identifies its
position in the hierarchical breakdown of the transformation unit.

In the transformation process of re-engineering this code, 25 in-the-small (ITS) software units
were created. (In-the-small entities are Ada bodies: package, procedure, function, task, generic,
etc.). The partitioning and encapsulation criteria produced 34 software units, which are in-the-
large (ITL) entities (i.e. containing no Ada bodies). In total there are 59 software units. Each of

2

Cotract N-mber N00014-92-C-0242 Flal Report Reengbieerbig DOD-STD-2167A Requirements Specincadam

these transformation entities is identified within the documentation, and their correr-'onding Ada
and graphical views are presented.

The partitioning and encapsulation phase of the transformation process creates a natural hierarchy
among the partitioned software units. This hierarchy is signified textually via a numerical
indicator called a tree code. Much like sub-sections of a paper, the dot (.) notation in the tree
code indicates descendant/ancestor relationships. The breakdown and representation of the
overall resulting hierarchy is textually represented via the Software Unit Mapping Report. In
addition to this report there is a graphical view which illustrates the hierarchical relationship via a
standard ER style representation. This Software Unit Map view is shown in Figure 3 below. In
order to understand the graphical views, Figure 4 shows the icons and edges along with their
symbolic meanings.

In regard to Figure 3, the Avionics Software Unit Map, the partitioning and organization is
explained in the following. At the highest level there is the system node AVIONICS, its tree code
is 1 signifying it as the root node. That system can be logically partitioned into three child
systems: HELIMAILBOXING (1.1), HELlPROCEDURES (1.2), and HELICOPTER (1.3).
These three partitions encapsulate the functionality of mailboxing tasks in HELIMAILBOXING
(1.1), support procedures in HELLPROCEDURES (1.2), and the main procedure, support
procedure tasking shells and controller task in HELICOPTER (1.3). By creating this type of
partitioning, functions logically associated to each of these child systems can be easily added or
maintained. For further definition of each of these three child systems, they in turn are partitioned
into even more specific functional systems. Each is described as a separate section below.

1.1 HELIMAILBOXING is partitioned into two child systems:
HELL_MBX_W1TH_ANDUSE (1.1.1) contains all the context nodes (i.e. Ada "with" and
"use") for HELL MAILBOXING (1.1); HELIMBXPACKAGE (1.1.2) contains two child
systems which represent the main mailboxing tasks. EXAMPLEHELI 10MBX (1.1.2.1)
maintains the mailbox for all I/O messages; EXAMPLEHELISIMMBX (1.1.2.2) maintains
the mailbox for all messages to and from the simulation module. If additional mailboxing tasks
were required, or the existent ones needed updating, this organization of partitioning allows for
clear and understandable functional delineation.

1.2 HELILPROCEDURES also is partitioned into two child systems.
HELIPROC_WITH_AND USE (1.2.1) contains all the context nodes for
HELlPROCEDURES (1.2). The system HELI_PROC_.PACKAGE (1.2.2) represents a
package of all the main supporting procedures.

CLOCK (1.2.2.1) is the system representing the clocking procedure for real-time event pulse
computation. It has two systems representing: the function GETMAX (1.2.2.1.1) which relays
the number of tasks in its execution diameter; and the procedure MBX_WRITE (1.2.2.1.2) which
sends the clock pulse to the simulation mailbox.

HELl 10 PROCS (1.2.2.2) is a system provided for logically grouping the I/O procedures.
There are two 1/0 procedures which deal with operator input (via a keyboard) which requires

3

Cn•marCt Number N00614-92-C-02C FWW Report Rormeering DOD"TDif2167A Raq• misreW Spe•damiom

parsing, and informatory output (via a display). Therefore, two child systems appear. DISPLAY
(1.2.2.2.1) handles all output to the screen. DISPLAY receives data from a mailbox through its
child procedure MBXREAD (1.2.2.2.1.2). DISPLAY's other child, GET_MAX (1.2.2.2.1.1),
relays the number of tasks in its execution diameter. The input system procedure is PARSER
(1.2.2.2.2); it is responsible for obtaining and parsing user input; it then sends information to
either the simulation module or to the display module via a mailbox. The PARSER child system
MBX_WR1TE (1.2.2.2.2.2) handles the output going to the mailbox. The other child,
GET_-MAX (1.2.2.2.2.1), relays the number of tasks in its execution diameter.

Finally, the system SIMULATE (1.2.2.3) represents the main simulation procedure. It is this
module which calculates fly-to-point parameters to carry out the helicopter simulation.
SIMULATE receives and sends data via a mailbox. Therefore, it has two child systems to handle
these actions: MBX_READ (1.2.2.3.2) for input messages from CLOCK and PARSER, and
MBXWRITE (1.2.2.3.3) for output messages to DISPLAY. GET_MAX (1.2.2.3.1) relays the
number of tasks in its execution diameter.

By partitioning the main supporting procedures in this manner, adding a new system like RADAR
becomes very straight-forward. It is clear within the above partitioning that a system node such
as RADAR could be added with a tree code of 1.2.2.4; a brother node to SIMULATE (1.2.2.3).

1.3 HELICOPTER is the third child system of AVIONICS. Its child
HELICOPTER.WITH_ANDUSE (1.3.1) is a system containing the context nodes for
HELICOPTER. The system HELI (1.3.2) breaks down into four child systems which in turn
control the entire simulation. CLOCKS (1.3.2.1) is the task shell for the CLOCK procedure.
HELICOPTER_10 TASKS (1.3.2.2) logically groups two children associated with I/O:
DISPLAYS (1.3.2.2.1) is the task shell for the DISPLAY procedure, and PARSER_S
(1.3.2.2.2) is the task shell for the PARSER procedure. SIMULATES (1.3.2.3) is the task shell
for the SIMULATE procedure. The system CONTROLLER (1.3.2.4) is a task responsible for
starting and coordinating all of the other tasks. It utilizes its child procedure system INDX
(1.3.2.4.1) to start the tasks in the appropriate order. The child function system ALLDONE
(1.3.2.4.2) informs the CONTROLLER when the tasks have terminated, thereby allowing it to
terminate the simulation.

The SRE environment is flexible enough to allow the user to modify this partitioning at any time
during the Software Understanding process. Through the addition of system nodes or a change in
partitioning criteria, the view of software units can be produced to satisfy any level of system
delineation for better understanding. The above partitioning example provided a clearer
understanding of the Avionics source Ada which was not organized in such a functional manner.
By using system nodes and adding criteria for package, task, procedure, and function partitioning
the above mapping was produced.

4

CeAmtrad Number N0A014-92-C-024) Flii Report Reengimeering DOD-STD-2167A Reqmirements Spodeficom

4. A Guide to Perusing the SRE Outputs

Throughout the SRE re-engineering transformation process, reports are produced which aid in
understanding. As mentioned earlier, the SRE environment maintains a catalog of transformation
units. Each transformation unit has many sub-entities related to it: original source code files,
ESL files, software units, in-the-small units, report files, possibly generated Ada and eventually
compilation make files. The catalog identifies each of these entities by a name and points to its
physical disk location. The tree code hierarchy mentioned above is also stored in the catalog so
that the user may have "quick" knowledge of the transformation unit's overall breakdown in
hierarchy.

During the Software Understanding phase, which utilizes DEC Design, the user may perform a
number of retrievals which help to more fully understand a piece of the resultant transformation.
These retrievals may be textual, such as all the comments within a software unit, or graphical.
This "book" is a compilation of information for each of the resultant sub-entities of the Avionics
transformation unit. The Catalog Report shows each entity entry and the Software Unit
Mapping Report summarizes the naming and hierarchy of the software units. For each software
unit and each in-the-small unit there can be a number of retrievals. Within this report appear 3
basic retrievals: comments for each unit, the graphical view of the unit showing only scope edges,
and the generated Ada for the unit. As such, each unit is arranged according to its position in the
hierarchical breakdown by tree code reference. The software units appear first and are then
followed by the in-the-small units. Please refer to Figure 4 for interpreting the SRE icons and
edges when regarding a graphical view.

5

cowdet Timber Ng149.CAW Ib Usu Ruuukewmeg DODEIMh2IE7A R~qinhinmM SPOCN-def

Computer Comman~d and Control Company SRE Catalog Report l3enerac.,;r
.* .. *. *..**..t..***** I....

CATALOG FILE REPORT FOR: DATE$SDISK: 'SRE-TEST. RT !CATALOG. DAT

catalog report created on 5-4-1994 at 15:00:20

This catalog contains the following Transformation Ur.,t~s):
avionics

Transformation Unit; avionics

Source Language Files: language ýAda)
kiwi~dub0: fsre-test.rt'av-oni-cs-:es:.aaa

ESL Tuple Tree File: avionics (ESL Tuple Tree)
ki.wiSdub0:Csre-est.rtlavionics.tp..

ESL Symbol Tree File: avionics (ESL Symbol Tree)
kiJwi~dub0: sre-zest, rtavioncs .sym

Unit ESL Fil1es:

in the Large: avionics (ESL :7n the Large)
kiýwi~du0O:[sre-test.rtlavion4-cs.-rg

Unit Mapping File: avionics (Software Unit Map)
ki-wi~dub0:avionics_e-uzu-t_mnap.

Unit Mapping Report: avionics ýSoftware Unit Mau Report)
ki.wi$dub0:.avioni-cs-eanit_map. :ýx

Software Unit Files:l AVIONICS (SYSTEM)
kiýwisdub0: 'sre-est.rtAVOCNzCS2.
1 ?1 EL:..MA:_L3OX:.NG SYSTEM)
ki4w-$duiD0: sre_ý:est.rt~uEL MYA::3cX:NG.1-

:,.:. HEL:_XEX_2V1TH_AND_U.SE ;.SYSTEM)
k iwi SdubO: Csre-zesc. rt:HELZ_MBX_:Uv TH_.ND_: L-1
.1.2 _7EEL:_mEX_Pxc:<(AG2 (?ACK_3c0Y
kiwi Sdubn0: C sre-:est .rt HE':_MBX_?.AC.KAGE. 2.

_=z.XAMPLEHEL :_MOBX ýTASKBCDY)
kiwiSdub0Kýsrezest. rt EXAMPLZ9E22 MXL2

1..22 XAMPLEHEL2_S7:M_MBX (TASKBCDYý
kiwidub:(setes~rtAMPE.J~L~.S:MMBX.1_-

1.2)iEL:-PRCCEDURES (SYSTEM)
ki4wi~dub0-: (sre_test.r:¼'.EL _?RCC!-D.E7. -_-

1.2.1 HE':_PR0C_'ITHANDMSE)SYSTT-M)
kiwi $dub0O: [sre-.:est. r:!E:PCqT4 N S2

1.2.2 HEL:_PROCPACKAGE ýPACKSCD'ý
kiwi~dub0:tsre_:est.r&MHEL _?RCCPAC?<AG7-.I§§-
.2.2.2. CLOCK POCODyl
kiwi$d~b0:)(sre..test.rttiCL0CK.2. 2 _

1.2.2.1.2 MBXWRTE (PROCBODY)
kiwi$dub0: [are test.rt],XDX-'R:TE.1...22_ _--

1.2.2.2 HELI-TO_?ROCS (SYSTEM)
kiwi$dub0: [sre..test.rt]HEL...0...ROCS.!-ý---

1.2.22.2.1 DISLAY (PROC-BODY)
kiwi~dubO:lsre..test.rtJDISPLAY2. 2_2 2_2I

1.2.2I.2I.1.I GET %AX I C-BODY)
kjwjSdub0: [Sre-test.rt)GET-9MAX. 22.2AJ---"

1.2.2.2.1.2 MBX..READ (PROC-300Y)
kiwi~dubO:[sre-test.rtlMBXP.EAD.1_-2- ý2 _ _-

1.2.2.2.2 PAXRSER (PROCBODY)
kiwi$dub0:(sre_test.rt]PARSER.1..2...2_2.2

1.2.2.2.2.1-GET..MA.X (FCN-BODY)

1.2.2.2.Z.2 M9X__RITE (PROCSBODY)
kiwi$dub0:[5re..test.rt)MBX-,VRITE2._2_2 2 2 2--ý

Figure 1: Avlonkcs Catalog Report.

6

Ceutoct Number N00014-92-C-0242 Flual Repoft I heglei mg DOD.STh2167 l Requfrwauat Spedicathons

2.Z.:3 S:MULTExr 'RCC_3CCY'
k:wiSdubQ:se.jet ,I4tr.

:. 2. .3. 1 GET _AAX ~ 30
k--wi$dubO sre~test, tG: !_-2_

.2 .2. 3.2 MBX_READ ;PRCC_3.CDY%
kiwi~dubO:'sre-..est.rt:.MBX_READ:_ZZ--

L-.2. 3.3 XBX_-VRZTE ?COY
c wi.SdubO:7sre resz.r: ._1BXWR2.:
.3 H.ELICOPTER (SYSTEM)
k wi$dubO: [sre..test. ::'HEL2COPTER.

3.1 HELICOPTER_WI1TH_A-ND_U.SE :SYSTEM)
c *wi$dubO:[r..et:MLCPETADS.

i.3.2 HELl (PROCBODY)
k.wi$dubO: rsre_test.rz:'HEL...:_3_2
.32.1 CLOCKS (TASKBODY)

k wi.SdubO: [sre-zest.rt! CLOCK-S. ~
,..2.2 HELICOPTER_20_TASKS (SYSTEM)
kiwj$dubO: ý sre-test. rt HEL:C0PTER_:o_TASKS. 1 2
.3.2.2.1 0ISPLAYS TS.O

kiwi~dub0: (sre-test. = DISPLAY_35.:_3 2 2_-_
'.3 .2.2.2 PARSER-S TASK-3ODY)
kiwiSdubO: Esre~sesz_:m:;PARsER_l_3.:2 2

'.3 .2.3 SIMULATES T-ASK.30D?)
"kwi-gdubO:rse:s.tSMLT .

:.3.2.4 CONTROLLER 'TASKBOODY)
kiwiSdubQ: [sre-test. r'CONTROLLZR..1-3-2-4

:2.2.4.1 -"MX)3'CN_=CDYI
j 0ub: sre_zesc.rz :NDX.:_1 _

i 1.3.2. 4.2_ ALLDICNE .TCN3aCDy)
k_-wi~dub0: ' sre-test. r:'ALL_20CNT -_3_:_-4_-

:n the Small; .1. HEL:_.MBX_?ACKAGZ -ESL :e ra
kiwi~dubt): ýsre- est~rt:¼(!L2MBX_?AkCKýAGE-SML

* :.: XAMPLE.IEL _2ZMBX ýE.. in -'e sma.....
ki.qiSdubC: ýsre-test.=::'EXALMPLZ))EZ:_:0_MBX.zSML

L .2 Z.2 _XýAMPLE_:4EL2...52:M.MBX iS n zhesmL:
kiidub0): sre zesz. r: EXAMPLEiLMMX.M

1 ... 7 ... L2_?RCC_?ACKAGE7 inS :Ze sma-1)
kiwiSduDO seze:r>ELRCAKG.M
Z. 2.1. CLOCK (ESL in ::ne small)
k'-wi.dubO 1sre_::est.r:'CLCCKSML
.2 -.2.: .1 GETMAkX (ESL i- n -le smal:)
i(WiSdub0: rsre_:est.rtj1GET_MAzX.SML

.2.2.1.2 .MBX..WR:TE ()ESL -in the small)
kiwjSdubO: [sre~test.r:t MBX ;JRITE.SML

!.Z.2.2.- DISPLAY (EESL _n zhe small)

ki.wi~dubO: [sretest.r:7DIS?)AY.SML
.2 .Z,.2I.2.I GET_.J4AXI ! SL in the small)
k-iw~$dubO: [sre test.rn:GET_MiAX_1.SML

1.2.2.2.11.2 MBX-.READ (ESL in :he small)t
kiwii~dubO: [sre..test.::ýMBX_REAZ.SML
.2.'. 2. 2 PARSER (ES' .rin the small)
kiýwi~dubO:(sre-.test.:t'?ARSER.SML

1.2..2..2.GET...MAX..2 EcSL in the small1)
k~iwi~dubO: Lsre~test.rt;GET_MAX_Z.SML

1.2.2.2.2.2 MBX_,-RITE_I)ESL in the small')
kiwjiSdubO: [sre~test.rtIMBX..WR:TE-J.SM1L
Z..2.3 SIMULATE (ESL in the small)
ki.wi SdubO: [sre.~test.tI SI.MULATE. SML

1.24.2.3.1 GET_ MAX_..3 (ESL i.n the small)
ki.wisdubO: [sre..test. rz:GET_MAXý_3. SML

.L.2,2.3.2 MBXREAD_. ES5L in the small)
k--wi$dubO:[sre test. tMBX_REA)_:.S.ML

;..2.2ý.3.3 MBX-WRITE-.2 ,ESL in the small!
kiw4i~dubO:[sre-.test.r:IMBX_WRITE_2-.SML

Figure 1: Avionics Catalog Report (Continued).

7

coomme Nmbww NG014.S2.C4W4 Fbd Rapwet Reu~wuswg DOD471D-21WA Rwquirist SpecwUiS-

:.3.2 EEL: (ESL -- te ýmll
kiwi$dubO: [sre..:est.rtýHELZ.SML

1.3 .2.1 CLOCK-S (TESL i~n the sznal'
kiwisdubO:fsre-cee.rt:CLCC<..S.SML

1.3.2.2.1 DISPLAY-S (Ein :he ~rama.-
kiwi~dutO~fsre-:est.r::DISPLAYS.SzML

1.3.2.2.2 PARSERS (75L in the sma..,
kiwiSdubO:fsre..:est.rtIPARSE&-S.SML

1.3.2.3 S2MULATES (ESL in -the sma--;
k.wi$dubO:(sre~test.rt]'SIMULATE_ 3.SML

1.3.2.4 CONTROLLER (ESL in the sama)
k~wi~dubO: (sre_test.rt'CONTROLLER.SMfL

:.3.2.4.1' :NflX (ESL in the sma:ll)
kiwi~dubO:(sre-sest.rtl:NTX.SML

1.3.2.4.2 ALL-DCNE (ESL in :t.e sinaI>
jc..wi~dubO: (sre-sest.rt'ALL-ZCNE.S:IL

Comp~.lation -MakefiJ1e: avionics ýCcinpilation Order,
fi.le: not available

End Transformnation Unit

Figure 1: Avionics Catalog Report (continued).

8

Cm~uuc Nmbea N00014-92C-024 Fb.#J Repen Reniiafteing DOD-STD-2167A Roquhrmamits Speeilksdaut

PARTITION and ELNCApSULkT:CN SL-IMAP-Y

~CJECT:avionicS
:ATZ- WVed Apr -7 16:2-8:11. .994

S ECSU LAT 10N -. ZNC..UDED
pAR--:T:ON CRITERIA:

* SYSTEM

PACK-BODY

* ~TASK...BODY
pRoC..BODY
TC.NL3ODY

* C'A.k: zN::TS: 34

VJOTE: The hierarchy of Software Uinits is represented by the tree c-tdes.

...........**........
.............

AV/:cN:CS (SYSTEM) :50 nodes

AV:k4ICS. 2

.-zL.2.mA;Lacx:NG fSYSTEM) :24 nodes

t:EL:_AZ LBOXING -1

L:MBXI-TH AiND-'I :SyrM :9 nodes

-. . ;E:. -BX .?AC .AG ?AC KQSC2 : : 9 nodes

MxP"CKAGE.

-. -7. :MPL.J4E~O~MK ~ ASK..~C~' 2 nodes

TEXAMPLE..HEL:-S:M-MBX
ASCVJ :.ncdes

4PLE3E~2IM~~:45 nodies

HT{L:.:..?FCCzDURES (YS:3- 4

::E- Rcc_?AvIT5AGr.§S (?ST!M-2C :2nodes

**E::.2 PcCC.2AC AGE AK3Y .oe

2.2: ORCC-BC:Y' nodes

2. ZCCK3.(ZCN.30cy
:Z nodes

* MBXJJRITE (VPSO-C CYý 2. nodnes

:222 HE::-Rc
(SYS-Em! :- n.odes

DSLAY.RGC3C;BDV)
:. nodes

DISLAYI-22-21 (CN..3CDy) n odes

Z.,2 2.2. 2 MBX~ REDPRCC_3CDYý
:2 nodes

2.22.224BX-READ.2-
2 ~ ~ (PROC SCOY : :3 no(es

?ARSER.I.-2_2_2
2 (FCN-=9C~~ nodes

GETMA -I _ _ ;(?RGC-300y) :Z nodes

!.2 .-,Z^-MBXWRITE

* -RTE122--- (PROQ.3QDY :2 nodes

12.113~ S2MULATE
SIMULAlT.1_2_2 .. 3 (C-C oe

~~ ~GET-MAX CLC(.. O~

3. MBXREAD

Figure 2: Avionics Software Unit Mapping Summary.

9

Co.buu Nmobe N0001492PC-02 Ihl Report Raeeggmeerig DOD-S1D-16nA Req.Ir~mts Sped0=dom

Z14BX_-READ. 12-Z-32..3

.2.2.3.3 MBX-)JR!TE fROC_3ODY; : nodes

MBXK'WITE.1-2_2_3-3
HEL:COPTER (SYSTEM) :22 nodes

HELICOPTER.1-3
2... HELICOPTER_W7THANDJýSE (SYSTEM) :-73 ncdes

HELICOPTER_WI.THAND_'ýsz.:-- oe
2.3.2 HELl (?RCC..BODY) :2roe

HELI.1_3_2
:.~... CLOCK...S (TASK..BODY) :2 niodes

CL-OCKS.1_3_2_2
ý.3 .2.2 HELICOPTER_10O_TASKS (SYSTEVM1) n .rodes

HELICOPTER_ 10_TASKS.1_3_2-

ý,.3.2.2J.- DISPIAY.S (TASKBODY) :2 nodes
DISPLAYS. 13_22_I

1.3.2.2.2 ?ARSERS (TASKBODY) :2 nodes

PABSERS.I._3_2_2-2
'.3.2.3 SIMULATE...S (TASK-BODY) :7- nodes

SI1MULATES.I_3_2_3
1.3-2.4 CON-ROLLER (TASKBODY) 7i nodes

CONTROLLER.2...3-Z4
'.3.2.4.- :NqDX :F:.BP ~ :nodes

TNDXA._3-2_41
- 242 ALLDONE (TCNBODY) :Z nodes

ALLDONE2._3_2_4_2

Figure 2: Avionics Software Unit Mapping Summnary (continued).

10

C~amira Neember N00014-92-C4242 Vbmd Report R~enqewing DOO.STD-2U67A Requiriemum SpedS~adomA

Flgure 3: Avionics Softw--e Unit Map.

Camfrac Nauber N00014-92-C424 FbaI Rtpawt Rew~hm~g DOD4TD-U67A Roquhrmmeu Spedflcadom

........

Package Pror.
lGeneric PaL Generic; akr, Cond Stmnt

Procm
PcaeSon FI. Soc File- sign Stmnt

prom.
Packaue Body Fai. Boctv ~ mments _Call Stmt

Tas Tv Variable 7vue ontral Stin essace Stint

ask Spec Variables Ontext Stint I/O Stint

egin
ask Body System to St"n Loop Stmnt

------>

Scope Tuple
(Straight) Call Tuole 0 TuLve Context Tule~

ntry Call 'Schedule
kemoryi Tuple ype Tule uple- Iuple

Figure 4: Icons, Edges, and Legends.

12

Combudn~ N~zbtr N00014-92-C4242 Ffmaa RPoAP keemgbeeursg DOD-SMW2167A Reqsirmunu Sp~c~dfmsan

APPENDIX I

PROJECT PUBLICATIONS

13

* c COMPUTER COMMAND AND CONTROL COMPANY

2300 CHESTNUT STREET. SUITE 230 • PHILAOELPHIA PA 91^13
215-a54-05S5 FAX: 215-854-0665

The Synthesis of Software Artifacts
with Implementation:

Re-creating Requirements Specifications

1994 Complex Systems Engineering
Synthesis and Assessment

Technology Workshop (CSESAW '94)

July 19-20, 1994
Washington, DC

Dr. Judith Ahrenst, Mr. Evan Lock, and Dr. Noah S. Prywes*
Computer Command and Control Company

2300 Chestnut Street, Suite 230
Philadelphia, PA 19103

Tel: 215-854-0555, Fax: 215-854-0665
Email: lock@cccc.com

tAlso with Drexel University

*Also with University of Pennsylvania

Abstract
There is a strong tendency in the Department of Defense Piograms to re-develop new software

when legacy software can be reused at lower cost, reduced development time and higher quality
based on real-life experience. The decisions for re-developing software are frequently based on
inadequacy, or sometimes lack, of documentation and the difficulty of understanding the legacy soft-
ware. The cost of software understanding has been estimated at 50% of the cost of reengineering.

This paper describes an approach and toolset that synthesizes automatic processing of legacy
code to produce a graphical explanation of the software architecture, and to generate reliable soft-
ware specifications documents in accordance with DOD-STD instructions. The need for this capa-
bility is widely recognized.

This capability has been under development for the past 3 years. It consists of integrating the
Software Reengineering Environment (SRE), funded by the Naval Surface Warfare Center
(NSWC), and the Software Specification Assistant (SSA), funded by the Joint Logistics Command-
ers-Joint Policy Coordinating Group on Computer Resource Management (JLC-CRIM). The devel-
opment is nearing completion and a demonstration project is planned.

1. MOTIVATION
At a recent workshop on Reengineering (Fourth Systems Reengineering Technology Work-

shop, February 8-11, 1994, Monterey, CA), several speakers reported that understanding legacy
software accounts for 50% of the cost and time of reengineering. At this high cost, Program Manag-
ers tend to write off all or parts of the legacy software and develop new system modules or entirely
new systems. Thus, there has been a widely recognized need for automating software understand-
ing.

Another widely recognized problem is the frequent unreliability, incompleteness and some-
times total lack of software documentation. Software documentation is produced in many software
development projects as the last step and tends to be short-changed. There has been no effective
procedure to determine the quality of submitted documentation. The inadequacy of documentation
has also prevented verification that the software provides the capabilities established in planning,
specifications and contracting documents.

Programs across DOD need to be able to:

i. Check conformance with Software Specifications in periodic Contractor reviews
and upon delivery of a new system,

ii. Update obsolete specifications,

iii. Create specifications for undocumented software,

iv. Understand existing software architecture (for reuse).

The proposed capabilities will have a wide ranging impact on:

i. Reducing maintenance costs by graphically explaining the architecture and opera-
tion of the software.

ii. Increasing system life through adding new builds incrementally based on explaining
graphically the architecture and operation of the software.

iii. Facilitating modernization through exposing the steps necessary to execute the sys-
tem in a modem distributed computer communications environment.

iv. Improving 4uality and usefulness of systems through facilitating verification of a
system in reviews that assure conformance with the requirements, specification and
contract for the system.

The next section describes the two toolsets (and their interface) that are the basis for providing
the above capabilities. The third section describes how the two tools are used together to define an
approach to re-create documentation. Section 4 reviews status and plans.

2. TECHNOLOGY
Two automatic tools, used in the automation of software understanding and documentation. are

shown in Figure 1. They are:

"The Software Reengineering Environment (SRE) [SRE]: It has been de-
veloped under the sponsorship of the Naval Surface Warfare Center
(NSWC). It incorporates software translation to Ada (from CMS-2 and in
the future from FORTRAN) and the abstracting of Ada code to re-create
graphically the architecture and the data and control flow.

"* The Software Specification Assistant (SSA) [SSA]: It provides tools
(COTS) for searching historical documents and the editing and formatting
necessary for creating and updating software specifications.

Each of these environments are described further below. These descriptions provide the basis
for explaining how the capabilities are synthesized as part of a cohesive approach for document re-
creation.

2

Software Reengineeriig Software Specification
Environment (SRE) Assistant (SSA)

_ Reqouiwremns

Legacy S1W Abstractions: Sfwr
or Reuse - _jw 1. Module Hierarchy Requirements/
Software IjSpecifications:

(Ada and/or " JDiagrams Documents
Older Lan- 2. Data Flow Diagrams For Reuse
guages) 3. Module Interface

Diagrams
4. Object Use Diagrams
5. With/Use Diagrams
6. Text of Comments

Software
Visualization
UDia~grams Document

Repository

Located at Software Stand Alone PC Based
Development at Program Offices

and Support Activities and Contractors

Figure 1: Process of Re-creating Software Specificzations.

2.1 Software Reengineering Environment (SRE)
SRE incorporates the technologies of software translation, visualization, and understanding.

SRE's architecture and capabilities are shown in Figure 2. The SRE consists of two phases, Software
Restructuring and Software Understanding.

3

Software Restructuring Software Understanding

Legacy Software Documentation

SAnalysis
- Architecture

Ada __- Dataflow

- Graphic - Interfaces
Representations - Objects

Parsers - Memory - Compilation SAllocation
Dependency

Translators (in CMS-2,
FORTRAN)

- Reorganization
(Object Oriented) AaCd

FO A RelationshipsGrpi toves
and Interfaces Repository f

(enumerated later) - -

Figure 2: Architecture and Capabilities of the Software Reengineering Environment (SRE)

Software Restructuring parses and translates CMS-2, Ada and, in the future, FORTRAN code.

statement by statement, into Entity-Relation-Attribute (ERA) diagrams of pseudo-Ada [PRYW].
This diagramming scheme is called Elementary Statement Language (ESL) for Ada. Next, the
ESL-Ada is transformed repeatedly to obtain an Ada programming paradigm in a series of passes
that achieves 100% translation to Ada. Each pass translates different aspects of the programming
paradigm of the source language into the Ada programming paradigm (e.g., separating object speci-
fications from bodies). During the translation process, a number of sets of relations among program
statements are generated. The statements form nodes, and the relations form edges, in the ESL-Ada
graphic diagrams.

Software Restructuring partitions the software into multi-level hierarchical software compo-
nents. Software Abstraction Documents (shown in Table 1) are then generated. They describe hier-

archically the architecture of these components from different perspectives. Component diagrams
are stored in a graphic repository.

4

Abstraction S/SS System/Segment S/SDD System/ SRS CSCI IRS CSCI
Document Segment

Hierarchy Diagram Par. 3.1, 3.2.3 System Par. 4 System Par. 3.1 CSCI Par. 3.1. CSCI
Architecture Architecture External Internal
Diagram Diagram Interface Diagram Interface Diagram

Flow Diagram Par. 3.3 CSCI
Internal
Interface Diagrams

Interface Table Par. 3.3 CSCI Par. 3.x.1 Data
Internal Element Table
Interface Diagrams

Context Diagram For Ada Compilation

Object/Use Diagram For Object Orientation

Comments Text For Capabilities

Table 1: Mapping Software Abstraction Documents into Software Specifications.

Software Understanding (SU) consists of query and retrieval of graphic diagrams that illustrate
the software from various perspectives. A graphic query language is provided for ad hoc browsing
of the Software Abstraction Documents in the graphic repository. These graphs show relations be-
tween high or low level hierarchical components. This facilitates understanding of the software's
architecture as well as its detailed code [PRWY3]. Facilities are being developed to make changes to
the program, for debugging or program restructuring, via the graphics used for visualization. Soft-
ware visualization overcomes the essential invisibility (i.e. non-physical quality) of software by
representing graphically the program structure, control flow, and data. An abstract, graphical repre-
sentation can facilitate a software engineer's visual perception and cognitive understanding of com-
plex software during debugging, monitoring, and especially, program restructuring. in this way,
maintenance can be performed on the reverse engineered design and/or transformed old code.

2.2 Software Specification Assistant (SSA)
SSA [SSA] was designed for project technical management. It is an integrated set of informa-

tion repositories and tools for software specification of critical mission systems. It instructs and in-
forms novice to expert staff in specifying, updating and evaluating DoD-STD data item descriptions
(DIDs), including the System/Segment Specification (SSS), System/Segment Design Document
(S/S, Software Requirement Specification (SRS) and Interface Requirements Specification (IRS) of
DoD-STD-2167A (and similar documents on its planned successor DoD-STD-SDD) [2167A].

SSA maximizes the effectiveness of supervisory staff who are experts in the preparation of re-
quirements specifications, and provides an automated mechanism for novices to upgrade their skills.
SSA thus provides two modes of operation. In supervisory mode, using the Status Manager subsys-
tem, the supervisor structures the requirements specification tasks and monitors progress. Inactivity
mode, the Step--By-Step subsystem, guides a novice specifications analyst through the required
work processes. SSA thus embodies much of the knowledge found in supervisory staff, enabling an
organization to make efficient use of this scarce organizational resource.

5

SSA is composed of four customized subsystems. The function of the subsystems is as follows:
"* Documentation Manager is used to create catalogs of application and ref-

erence documents in databases.
"* Assignmient Manager is used by a manager or supervisor to enter the work

plan for staff who compose or update documents.
"* Step-By-Step guides users engaged in searching documents and compos-

ing/updating Requirements and Data Items.
"* Evaluate provides feedback on the completeness of the specification cov-

erage [ARTH].
SSA also integrates the following commercial off-the-sheif software (COTS): document load-

ing and publishing (e.g., Interleaf, MS-WORD, or Word Perfect), Search (Zyindex), CASE (de-
pends on use by the Program Office).

The Assignment Manager subsystem enables a supervisor to create a documentation plan and
assign subordinates. The process is accomplished by selecting the appropriate function from the
Status Manager pulidown menu. For each project, tasks are allocated, organized and controlled
through a hierarchy of three lists: Things to Do, Target Documents, and Target Document Para-
graphs.

In the Things To Do List the supervisor enters the tasks that need to be accomplished. Examples
include: work on entries from an operational requirements document's table of contents, work on
items from a functional decomposition, or work on items requiring specification. For each task, the
supervisor references a previously loaded document (or equivalent) that expands on the item in the
Things To Do List. For example, clicking on the Things to Do list reveals a definition of its entries.

The Target Documents List contains the names of specification documents to be created or
updated. The Target Document Paragraph contains the Paragraphs to be created.

At each of the three list leveis, the user and the supervisor can record relevant instructions or
status information such as priority of the item, problems encountered in completing the item, or
sources of information used to complete the item.

After organizing the work needed to complete a plan, the supervisor assigns the work to subordi-
nates. The subordinate will use the Step-By-Step subsystem.

The Step-by-Step Subsystem guides the user through the process of preparing requirements
specifications. Step-by-step is an iterative process. Once a task and associated target documents are
selected, the user iterates, in various combinations (even during different sessions), to search for
application information and assistance, to compose data items, and to record a trace, until the se-
lected task is completed. Then, the user will select another task from the list of Things to Do and
repeat the process.

3. Approach: Interfacing SRE and SSA
The previous sections provided background on SSA and SRE. With these two capabilities

available, the next question to answer is -what are the necessary abstractions that the SSA user needs
to recreate specifications and can SRE produce these abstractions? The answer is that there are six
basic types of abstraction/information (see Figure 1) that comprise the interface between these two
tools [PRYW2].

6

The diagrams are created by traversing the repository for nodes with the following relations:

L. Hierarchy Relations: The entire repository is envisaged structured as an up-
side-down tree-like hierarchy. The root unit of the tree is called a System. Its
immediate descendants are called Segments. Segments can have as descendants
Segments or Computer Software Configuration Items (CSCI), CSCIs can be ob-
ject declarations, database declarations or major executable code units. CSCIs
can have multiple levels of descendents called Software Units (SU). Software
specifications document requirements/capabilities associated with each System,
Segment or CSCI module in the repository.

2. Architecture Unit Relations: These relations are specified for each architecture
unit. The interfaces are through data, transferred to or from the module or
through I/O or through references.

3. Data-Flow Relations: These relations provide information on units that partici-
pate in a Data Flow diagram of a process accomplished by modules. The data
flow relations are implemented in the programs by 1/0, procedure calls or mes-
sage passing.

4. Type-Instantiation Relations: These relations relate units that contain type (and
generic) declarations with those where these declarations are used.

5. With/Use Relations: These relations relate units that are users of other units in a
library of programs.

6. Text of Comments - These are related to modules through keywords.
The software abstraction process combines the above relations to produce Application Abstrac-

tion Documents (AAD). Each document is named, identifies the software being documented, speci-
fies what kind of document it is, and specifies what are its relations to other documents. Units are
either Systems, Segments, Computer Software Configuration Items (CSCI), or Software Units
(SU).

The information collected during the software abstraction process is presented in six kinds of
documents. All the documents focus on the high level units (systems, segments, CSCIs) of the soft-
ware being abstracted. Two kinds of documents deal with the relations that exist between units:

1. Module Hierarchy Diagrams specify the part-of relation

2. Context Diagrams specify the visibility relation
Object Use Diagrams specify the subclass and instantiation relations that exist between units,

and between types and data structures. Three additional kinds of diagrams describe individual units:

1. Unit Structure Diagrams specify the internal structure of a unit and its internal
and external interactions.

2. Interface Tables describe in tabular form the interactions between a unit and its
environment.

3. Comment Sections contain the comments associated to units.

No application abstraction document at present provides information on the dynamic behavior of
the software being abstracted. In particular, no state diagram. event diagram, or timing diagram is

7

produced. At present, timing information must be obtained through existing documentation,
simulation and/or instrumentation of the source code.

The above collection of graphic views is prepared by the SRE user. The diagrams are exported from
SRE, catalogued by SSA's Document Manager, and loaded into SSA's search system. This can be
accomplished electronically or through scanning. These diagrams and tables can be searched and
portions retrieved to satisfy user interests. The SSA user progressively searches these diagrams
along with prior requirements documents or other related application information to attribute
capabilities and non-functional requirements to the diagrams. The diagrams can be cut and pasted
directly into the appropriate sections of the requirements specification as shown in Table 1. This
searching of the diagrams can also serve as the basis for exploring commonalities and variabilities
of requirements for domain/application engineering.

4. Status and Plans
The implementation of the converged SRE/SSA system will be completed during the summer

of 1994. The plan is to follow this with a demonstration project to evaluate the system's usefulness
and effectiveness. The demonstration will consist of processing existing legacy code and producing
the necessary understanding and documentation. The demonstration will also compare existing
software documents with those produced by the automatic system from the code. The steps in the
project include:

Step 1: Selection of a software system to be used in the demonstration project with a participat-
ing DOD agency. The software system will have the following characteristics:

i. Existing software specification for later comparison with the automatically produced
documentation.

ii. Existing Ada code of significant size (e.g., up to 1000,000 lines of code).
This step will involve interviewing the DOD agency's programs and staff. The selected
software will have to be available for automatic processing by CCCC.

Step 2: Process the selected code in the SRE. Produce the software abstraction reports discussed
in Section 3.

Step 3: Transfer the software abstraction reports from SRE to SSA.

Step 4: Load the existing software specifications into SSA.

Step 5: Produce software specifications for the selected software.

Step 6: Compare the new and old specifications and produce a list of differences.

5. Bibliography
[2167A] DOD-STD-2167A: Defense System Software Development, September 1988.

[AHR] Ahrens, Judith, N. Prywes, and E. Lock. 4th Systems Reengineering Technology
Workshop, "Maintenance Process Reengineering: Toward a New Generation of
CASE Technology," Monterey, CA, February 8-10, 1994.

[ARTHI Arthur, J. D., R. E. Nance, "Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated Products," Technical Report
SRC-87-007, System Research Center, Virginia Polytechnic Institute, 1987.

[SSA] Software Specification Assistant User's Guide: Status Manager and Step-by-Step
Guide, Document Manager Guide, Evaluation Subsection Guide and Installation
Guide, delivered to the Joint Logistics Commander Computer Resource Manage-
ment Sub-Group and the Office of Naval Research by Computer Command and
Control Company as part of contract #N00014-9 1-C-0160, Dectnber 1992.

[LOCK] Lock, E. and N. Prywes, Tri-Ada '92 Conference, "Requirements on Ada Reengi-
neering Technology from Past, Present and Future Systems," Orlando, FL, Novem-
ber 16-20, 1992.

[PRYWI Prywes, Noah, G. Ingargiola, I. Lee, and M. Lee, 4th Systems Reengineering
Technology Workshop, "Reengineering Concurrent Software to Ada," Monterey.
CA, February 8-10, 1994.

[PRYW2] Prywes, N., Ingargiola, G. and Ahrens, J. "Automatic Reverse Engineering of Soft-
ware to Confirm/Update Requirements Specification." Computer Command and
Control Company, Contract No. N00014-92-C-0242. Philadelphia, PA. 19103.
June 1993.

[PRYW3] Prywes, N., Lee, I. "Integration of Software Specification, Reuse and Reengineer-
ing," Computer Command and Control Company, Contract No.
N60921-92-C-0194, Philadelphia, PA. 19103, June 1993.

[SRE] Software Re-engineering Environment (SRE) Demonstration Guide, Version 5.0.
Computer Command and Control Company, Prepared Under Contract
N60921-92-C-0916, White Oak Lab., Silver Spring, MD, May 6, 1994.

9

C CCOMPUTER COMMAND AND CONTROL COMPANY

2300 CHESTNUT STREET, SUITE 230 * PHILADELPHIA, PA 19103
215-854-0555 FAX: 215-854-0665

Technology for Re-Creating Documentation
4th Reengineering Forum

"Reengineering in Practice"

September 19-21, 1994
Victoria, BC, Canada

Dr. Judith Ahrenst, Mr. Evan Lock, and Dr. Noah S. Prywes*
Computer Command and Control Company

2300 Chestnut Street, Suite 230
Philadelphia, PA 19103

Tel: 215-854-0555, Fax: 215-854-0665
Email: lock@cccc.com

tAlso with Drexel University

*Also with University of Pennsylvania

Abstract
There is a strong tendency in the Department of Defense Programs to re-develop new software

when legacy software can be reused at lower cost, reduced development time and higher quality
based on real-life experience. The decisions for re-developing software are frequently based on
inadequacy, or sometimes lack, of documentation and the difficulty of understanding the legacy soft-
ware. The cost of software understanding has been estimated at 50% of the cost of reengineering.

This paper describes an approach and toolset that synthesizes automatic processing of legacy
code to produce a graphical explanation of the software architecture, and to generate reliable soft-
ware specifications documents in accordance with DOD-STD instructions. The need for this c ,pa-
bility is widely recognized.

This capability has been under development for the past 3 years. It consists of integrating the
Software Reengineering Environment (SRE), funded by the Naval Surface Warfare Center
(NSWC), and the Software Specification Assistant (SSA), funded by the Joint Logistics Command-
ers-Joint Policy Coordinating Group on Computer Resource Management (JLC-CRM t. The devel-
opment is nearing completion and a demonstration project is planned.

1. MOTIVATION
At a recent workshop on Reengineering (Fourth Systems Reengineering Technology Work-

shop. February 8-I1, 1994. Monterey, CA), several speakers reported that understanding legacy
sc ftware accounts for 50% of the cost and time of reengineering. At this high cost, Program Manag-
ers tend to write off all or parts of the legacy softvare and develop new system modules or entirely
new systems. Thus, there has been a widely recognized need for automating software understand-
ing.

Another widely recognized problem is the frequent unreliability, incompleteness and some-
times total lack of software documentation. Software documentation is produced in many software
development projects as the last step and tends to be short-changed. There has been no effective
procedure to determine the quality of submitted documentation. The inadequacy of documentation
has also prevented verification that the software provides the capabilities established in planning.
specifications and contracting documents.

Programs across DOD need to be able to:

i. Check conformance with Software Specifications in periodic Contractor reviews
and upon delivery of a new system,

ii. Update obsolete specifications,

iii. Create specifications for undocumented software,

iv. Understand existing software architecture (for reuse).

The proposed capabilities will have a wide ranging impact on:

i. Reducing maintenance costs by graphically explaining the architecture and opera-
tion of the software.

ii. Increasing system life through adding new builds incrementally based on explaining
graphically the architecture and operation of the software.

iii. Facilitating modernization through exposing the steps necessary to execute the sys-
tem in a modern distributed computer communications environment.

iv. Improving quality and usefulness of systems through facilitating verification of a
system in reviews that assure conformance with the requirements, specification and
contract for the system.

The next section describes the two toolsets (and their interface) that are the basis for providing
the above capabilities. The third section describes how the two tools are used together to define an
approach to re-create documentation. Section 4 reviews status and plans.

2. TECHNOLOGY
Two automatic tools, used in the automation of software understanding and documentation, are

used to synthesize the existing documents and code to derive requirements specifications. They are:

" The Software Reengineering Environment (SRE) [SRE]: It has been de-
veloped under the sponsorship of the Naval Surface Warfare Center
(NSWC). It incorporates software translation to Ada (from CMS-2 and in
the future from FORTRAN) and the abstracting of Ada code to re-create
graphically the architecture and the data and control flow.

"* The Software Specification Assistant (SSA) [SSA]: It provides tools
(COTS) for searching historical documents and the editing and formatting
necessary for creating and updating software specifications.

Each of these environments are described further below. These descriptions provide the basis
for explaining how the capabilities are synthesized as part of a cohesive approach for document re-
creation.

2.1 Software Reengineering Environment (SRE)
SRE incorporates the technologies of software translation, visualization, and understanding.

The SRE consists of two phases, Software Restructuring and Software Understanding.

Software Restructuring parses and translates CMS-2, Ada and, in the future, FORTRAN code,
statement by statement, into Entity-Relation-Attribute (ERA) diagrams of pseudo-Ada [PRYW].
This diagramming scheme is called Elementary Statement Language (ESL) for Ada. Next, the
ESL-Ada is transformed repeatedly to obtain an Ada programming paradigm in a series of passes
that achieves 100% translation to Ada. Each pass translates different aspects of the programming
paradigm of the source language into the Ada programming paradigm (e.g., separating object speci-
fications from bodies). During the translation process, a number of sets of relations among program
statements are generated. The statements form nodes, and the relations form edges, in the ESL-Ada
graphic diagrams.

2

Software Restructuring partitions the software into multi-level hierarchical software compo-
nents. Software Abstraction Documents (see Section 3) are then generated. They describe hierar-
chically the architecture of these components from different perspectives. Component diagrams are
stored in a graphic repository.

Software Understanding (SU) consists of query and retrieval of graphic diagrams that illustrate
the software from various perspectives. A graphic query language is provided for ad hoc browsing
of the Software Abstraction Documents in the graphic repository. These graphs show relations be-
tween high or low level hierarchical components. This facilitates understanding of the software's
architecture as well as its detailed code [PRWY3]. Facilities are being developed to make changes to
the program, for debugging or program restructuring, via the graphics used for visualization. Soft-
ware visualization overcomes the essential invisibility (i.e. non-physical quality) of software by
representing graphically the program structure, control flow, and data. An abstract, graphical repre-
sentation can facilitate a software engineer's visual perception and cognitive understanding of com-
plex software during debugging, monitoring, and especially, program restructuring. In this way,
maintenance can be performed on the reverse engineered design and/or transformed old code.

2.2 Software Specification Assistant (SSA)
SSA [SSA] was designed for project technical management. It is an integrated set of informa-

tion repositories and tools for software specification of critical mission systems. It instructs and in-
forms novice to expert staff in specifying, updating and evaluating DoD-STD data item descriptions
(DIDs), including the System/Segment Specification (SSS), System/Segment Design Document
(S/S, Software Requirement Specification (SRS) and Interface Requirements Specification (IRS) of
DoD-STD-2167A (and similar documents on its planned successor DoD-STD-SDD) [2167AJ.

SSA maximizes the effectiveness of supervisory staff who are experts in the preparation of re-
quirements specifications, and provides an automated mechanism for novices to upgrade their skills.
SSA thus provides two modes of operation. In supervisory mode, using the Status Manager subsys-
tem, the supervisor structures the requirements specification tasks and monitors progress. In activity
mode, the Step-By-Step subsystem, guides a novice specifications analyst through the required
work processes. SSA thus embodies much of the knowledge found in supervisory staff, enabling an
organization to make efficient use of this scarce organizational resource.
SSA is composed of four customized subsystems. The function of the subsystems is as follows:

"* Documentation Manager is used to create catalogs of application and ref-
erence documents in databases.

"* Assignment Manager is used by a manager or supervisor to enter the work
plan for staff who compose or update documents.

"• Step-By-Step guides users engaged in searching documents and compos-
ing/updating Requirements and Data Items.

"* Evaluate provides feedback on the completeness of the specification cov-
erage [ARTH].

SSA also integrates the following commercial off-the-shelf software (COTS): document load-
ing and publishing (e.g., Interleaf, MS-WORD, or Word Perfect), Search (Zyindex), CASE (de-
pends on use by the Program Office).

The Assignment Manager subsystem enables a supervisor to create a documentation plan and
assign subordinates. The process is accomplished by selecting the appropriate function from the

3

Status Manager pulldown menu. For each project, tasks are allocated, organized and controlled
through a hierarchy of three lists: Things to Do, Target Documents, and Target Document Para-
graphs.

In the Things To Do List the supervisor enters the tasks that need to be accomplished. Examples
include: work on entries from an operational requirements document's table of contents, work on
items from a functional decomposition, or work on items requiring specification. For each task, the
supervisor references a previously loaded document (or equivalent) that expands on the item in the
Things To Do List. For example, clicking on the Things to Do list reveals a definition of its entries.

The Target Documents List contains the names of specification documents to be created or
updated. The Target Document Paragraph contains the Paragraphs to be created.

At each of the three list levels, the user and the supervisor can record relevant instructions or
status information such as priority of the item, problems encountered in completing the item, or
sources of information used to complete the item.

After organizing the work needed to complete a plan, the supervisor assigns the work to subordi-
nates. The subordinate will use the Step-By-Step subsystem.

The Step-by-Step Subsystem guides the user through the process of preparing requirements
specifications. Step-by-step is an iterative process. Once a task and associated targtt documents are
selected, the user iterates, in various combinations (even during different sessions), to search for
application information and assistance, to compose data items, and to record a trace, until the se-
lected task is completed. Then, the user will select another task from the list of Things to Do and
repeat the process.

3. Approach: Interfacing SRE and SSA
The previous sections provided background on SSA and SRE. With these two capabilities

available, the next question to answer is - what are the necessary abstractions that the SSA user needs
to recreate specifications and can SRE produce these abstractions? The answer is that there are six
basic types of abstraction/information that comprise the interface between these two tools
[PRYW2].

The diagrams are created by traversing the repository for nodes with the following relations:
1. Hierarchy Relations: The entire repository is envisaged structured as an up-

side-down tree-like hierarchy. The root unit of the tree is called a System. Its
immediate descendants are called Segments. Segments can have as descendants
Segments or Computer Software Configuration Items (CSCI). CSCIs can be ob-
ject declarations, database declarations or major executable code units. CSCIs
can have multiple levels of descendents called Software Units (SU). Software
specifications document requirements/capabilities associated with each System,
Segment or CSCI module in the repository.

2. Architecture Unit Relations: These relations are specified for each architecture
unit. The interfaces are through data, transferred to or from the module or
through 1/O or through references.

3. Data-Flow Relations: These relations provide information on units that partici-
pate in a Data Flow diagram of a process accomplished by modules, The data

4

flow relations are implemented in the programs by 1/0, procedure calls or mes-
sage passing.

4. Type-lnstantiation Relations: These relations relate units that contain type (and
generic) declarations with those where these declarations are used.

5. With/Use Relations: These relations relate units that are users of other units in a
library of programs.

6. Text of Comments - These are related to modules through keywords.

The software abstraction process combines the above relations to produce Application Abstrac-
tion Documents (AAD). Each document is named, identifies the software being documented, speci-
fies what kind of document it is, and specifies what are its relations to other documents. Units are
either Systems, Segments, Computer Software Configuration Items (CSCI), or Software Units
(SU).

The information collected during the software abstraction process is presented in six kinds of
documents. All the documents focus on the high level units (systems, segments, CSCIs) of the soft-
ware being abstracted. Two kinds of documents deal with the relations that exist between units:

1. Module Hierarchy Diagrams specify the part-of relation

2. Context Diagrams specify the visibility relation

Object Use Diagrams specify the subclass and instantiation relations that exist between units,
and between types and data structures. Three additional kinds of diagrams describe individual units:

I. Unit Structure Diagrams specify the internal structure of a unit and its internal

and external interactions.

2. Interface Tables describe in tabular form the interactions between a unit and its
environment.

3. Comment Sections contain the comments associated to units.

No application abstraction document at present provides information on the dynamic behavior of
the software being abstracted. In particular, no state diagram, event diagram. or timing diagram is
produced. At present, timing information must be obtained through existing documentation,
simulation and/or instrumentation of the source code.

The above collection of graphic views is prepared by the SRE user. The diagrams are exported from
SRE, catalogued by SSA's Document Manager, and loaded into SSA's search system. This can be
accomplished electronically or through scanning. These diagrams and tables can be searched and
portions retrieved to satisfy user interests. The SSA user progressively searches these diagrams
along with prior requirements documents or other related application information to attribute
capabilities and non-functional requirements to the diagrams. The diagrams can be cut and pasted
directly into the appropriate sections of the requirements specification as shown in Table 1. This
searching of the diagrams can also serve as the basis for exploring commonalities and variabilities
of requirements for domain/application engineering.

4. Status and Plans
The implementation of the converged SRE/SSA system will be completed during the summer

of 1994. The plan is to follow this with a demonstration project to evaluate the system's usefulness

5

and effectiveness. The demonstration will consist of processing existing legacy code and producing
the necessary understanding and documentation. The demonstration will also compare existing
software documents with those produced by the automatic system from the code. The steps in the
project include:

Step 1: Selection of a software system to be used in the demonstration project with a participat-
ing DOD agency. The software system will have the following characteristics:

i. Existing software specification for later comparison with the automatically produced
documentation.

ii. Existing Ada code of significant size (e.g., up to 1,000,000 lines of code).

This step will involve interviewing the DOD agency's programs and staff. The selected
software will have to be available for automatic processing by CCCC.

Step 2: Process the selected code in the SRE. Produce the software abstraction reports discussed
in Section 3.

Step 3: Transfer the software abstraction reports from SRE to SSA.

Step 4: Load the existing software specifications into SSA.

Step 5: Produce software specifications for the selected software.

Step 6: Compare the new and old specifications and produce a list of differences.

6

5. Bibliography
[2167A] DOD-STD-2167A: Defense System Software Development, September 1988.

[AHR] Ahrens, Judith, N. Prywes, and E. Lock. 4th Systems Reengineering Technology
Workshop, "Maintenance Process Reengineering: Toward a New Generation of
CASE Technology," Monterey, CA, February 8-10, 1994.

[ARTH] Arthur, J. D., R. E. Nance, "Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated Products," Technical Report
SRC-87--007, System Research Center, Virginia Polytechnic Institute, 1987.

[SSAJ Software Specification Assistant User's Guide: Status Manager and Step-bi-Step
Guide, Document Manager Guide, Evaluation Subsection Guide and Installation
Guide, delivered to the Joint Logistics Commander Computer Resource Manage-
ment Sub-Group and the Office of Naval Research by Computer Command and
Control Company as part of contract #N00014-91-C-0t 60, December 1992.

[LOCK] Lock, E. and N. Prywes, Tri-Ada '92 Conference, "Requirements on Ada Reengi-
neering Technology from Past, Present and Future Systems," Orlando, FL, Novem-
ber 16-20, 1992.

[PRYW] Prywes, Noah, G. Ingargiola, I. Lee, and M. Lee, 4th Systems Reengineering
Technology Workshop, "Reengineering Concurrent Software to Ada." Monterey,
CA, February 8-10, 1994.

[PRYW2] Prywes, N., Ingargiola, G. and Ahrens, J. "Automatic Reverse Engineering of Soft-
ware to Confirm/Update Requirements Specification," Computer Command and
Control Company, Contract No. N00014-92-C-0242, Philadelphia. PA, 19103.
June 1993.

[PRYW3] Prywes, N., Lee, I. "Integration of Software Specification, Reuse and Reengineer-
ing," Computer Command and Control Company, Contract No.
N60921-92-C-0194, Philadelphia, PA, 19103, June 1993.

[SRE] Software Re-engineering Environment (SRE) Demonstration Guide, Version 5.0,
Computer Command and Control Company, Prepared Under Contract
N60921-92--C-0916, White Oak Lab., Silver Spring, MD, May 6, 1994.

7

Technology for
Re-creating Documentation

4th Reengineering Forum
September 19-21, 1994
Victoria, BC, Canada

Mr. Evan Lock, President Computer Command & Control Co.
Phone: 215-854-0555 C 2300 Chestnut St., Suite 230
Fax: 215-854-0665 C C Philadelphia, PA 19103
E-mail: lock@cccc.com

Outline

1. Motivations

2. Specification Technology (SSA)

3. Software Reengineering Environment (SRE)

4. Converging SSA with SRE

L1

Copyright, 1994, 00CC.

Customers/Payoff
For Specification Re-creation Capability

Projects Need To Be Able To:

* Check Conformance to Software Specifications
SPeriodic Review of Contractor
SUpon System Delivery

* Update Obsolete Specifications

"* Create Specifications for Undocumented Software

"* Understand Existing Software Architecture (for reuse, etc) C

Specification Re-creation Project Description

Offer An Automated Capability to Facilitate the
Process of Re-creating Software Requirements
Specifications (SSS, SRS, IRS) From Code.

Improve Understanding of Software To:

"* Reduce Maintenance Costs
"• Increase System Life
"* Facilitate Modernization
"* Better Perform Verification

C

Copyright, 1994, CCCC.

Process of Re-creating Software Specifications:
Convergence of SSA and SRE

Software Reengineering Software Specification
Environment (SRE) Assistant (SSA)

[Funded by NSWCI (Funded by CRM]

SoftareSoft ware Software
SoftwareSpecs ForDiagramsPrjc

or Reuse

ýSoff ware
Diagrams Dcmn
and Code Rpstr

Archtectre nd C pablitis o

LearchiSotectre an Caaiteso

Legcy re- Architecture
- Datafiow

daAnalysis -Itrae
Gramic- Objects

Represnathic n Compilation
OP Dependency

-Memory

Allocation
(CMS-21FORTRAN)

- Reorganization AaCd
(Object Oriented)I

Translators ~ GraphIc foViw
TrOnsstor - Relationships Repository foViw

FORTRANand Interfaces
(enumnerafted later)

0
0

Copyright, 1994, OCOC.

Steps In Generating The SRE Graphic Repository

Initially Represent Entire
Software Graphically

Bottom-UpBuild
Of~ ~~~ iVie-ufMiearchy

Produce Graphic Views
For Each Architectural Unit

C
C

Initially Represent Entire Software Graphically

Nodes: Ada Statements

Edges: 1. Variable Reference
2. Call
3. Message

4. 1/0
5. Generic/Instantiation
6. With/Use

Copyright, 1994, CCCC.

Sample "Scope" Relations

'Package

Variable

Type .

Variable Procedu

Sample "Non-Scope" Relations

For a PROCEDURE SPEC:

"* CALLed by a procedure body
"* MEMORY access
"* TYPE instantiation
"* CONTEXT with a package body
"* CALLS a task entry
"* SCHEDULEs a task spec
"* I/O access to a file

+C

Copyrght, 1994, CCCC.

Bottom-Up Build of
Top-Down Architectural Hierarchy

Nodes: Architectural Units
Descendent Units Represent Details

Of Parent Unit

Edges: Unit Interface (as above)

Graphical Retrievals

* Select a "Base View"
* Query "Base View" to Create "Sub-View"

- Select Root Node ("Within Package X...")
- Select Node Type ("Show Me All Procedures...")
- Select Relations ("and Their I/O...")
- Select Depth ("and Any Children")

a Query Sub-Views as Needed
a Save Sub-Views as Needed (for Documentation)
s Generate Ada From Any View

,opyright, 1994, OCCC.

SSA Functionality
Within the Systems Life Cycle

Preliminary IRequirements Study, Analysis Implementation
Phase 1wand Specification Phase OF- Phase

Existing
Text and Text and
Graphics - Graphic

from Requirements
Preliminary for Next

Requirements Version
and Previous

Versions

SSA Subsystems

Ejil Options Window 1ilep

Zyl ndex Excel

DTP Interleaf

ýopright, 1994, COOC.

SSA Payoff in TAMPS Demo Project

Improve Project Planning and Products

* Prioritize Functions
* Evaluate Cost Benefit Tradeoffs
* Select Upgrade Path
• Reduce Risks
• Improve Quality
e Extend Life
* Reduce Costs

Enhance Expertise of Staff

SSA Distribution to DOD

CCCC Has Support from the JLC-CRM
to Distribute SSA to Program Offices

Across DOD.

e Packaging
* Telephone Support
e Bug Fixes
• Training (Separate)

Contact for more information

Copyright, 1994, CCCC,

Necessary Software Abstractions for
Software Requirements Specifications

For Each Level of a System's Architecture
(Top Level, Segment, CSCI,...):

n Hierarchy Diagrams

m Data Flow Diagrams

a Interface Tables

w Context Diagrams

a Object Use Diagrams

i Comment Text

Mapping Software Abstractions Onto
DOD-STD-2167A Requirements Specifications

Abstraction S/SS System S/SDDSystem SRS CSCI IRS CSCI
Document Segment /Segment

Hierarchy Par. 3.1, 3.2.3 Par. 4 System Par. 3.1 CSCI Par. 3.1 CSCI
Diagram System Architecture External Internal Interface

Architecture Diagram Interface Diagram
_ Diagram Diagram

Flow Diagram Par. 3.1 CSCI
Internal Interface
Diagrams

Interface Table Par. 3.3 CSCI Par. 3.x.1 Data
Intemal Interface Element Table
Diagrams

Context Diagram For Ada For Ada For Ada For Ada
Compilation Compilation Compilation Compilation

Object/Use For Object For Object For Object For Object
Diagram Orientation Orientation Orientation Orientation
Comments Text For Capabilities For Capabilities For Capabilities For Capabilities

C

Co•pyright, 1994, CCCC.

Demonstration Project Overview
Organization (MICOM) Supplies:

- Existing Software Specifications (SSS, IRS, SRS)
w Existing Code

- Preferably Ada
- Less Than IOOK SLOC

Project Activities:

- Finalize Program Selection
a Process Code to Reverse Engineer Software Abstractions

- Assemble Specifications with Abstractions Using SSA
- Compare New Specifications with Existing
- Evaluate Process and Products

Copyright, 1994, CCCC.

C..wftlmN=*bwMM61492-C4=U hd Repeg Ramommig DOD,"-SJ)-.WA R~qmirins Spod~mdum

APPENDIX Il

EXAMPLES OF DOCUMENTATION OF

SOFTWARE UNITS

(FOR TOP TWO SOFTWARE UNITS OF AVIONICS)

14

Thu9 Apr 28, 1994 09:22:50 Commentsfor. Avionics (1) Page 1

The Avionics system contains the pieces necessary to
simulate a helicopter fly-to-point real-time routine
utilizing a series of tasks.

S we

Software Unit: Avionics (1)

WedApr 27, 1994 16:36:24 AVIONICS I (SWU Ada) Page 1

-- SYSTEM : AVIONICS(l)
-- UNDCLSYMREC

-- PACKAGE TEXTIO
-- PACKAGE CNFPACKAGE
-- PACKAGE M_TYPES
-- PACKAGE CONV ;
-- PACKAGE MATHOPU
-- PACKAGE UNPACKE
-- PACKAGE PACK_E ;
-- PACKAGE C4_SEQUENTIAL 10
-- PACKAGE SEQUENTIALIO
-- PACKAGE MODELUFCN ;
-- PACKAGE HELI_MBXPACKAGE
-- PUTLINE FILETYPE;
-- PROCEDURE CREATE (1
-- MBX_WRITE : FILETYPE;
-- PUTLINE : FILE-TYPE;
-- MBX_READf FILE TYPE;
-- PUTLINE FILE-TYPE;
-- PUTLINE FILE-TYPE;
-- PUT FILETYPE;
-- PUT : FILE_TYPE;
-- PUT FILE_TYPE;

-- PUTLINE : FILETYPE;
-- PUT FILE_TYPE;
-- PUT FILETYPE;
-- GET_LINE : FILETYPE;
-- SKIPLINE : FILE-TYPE;
-- PUTLINE FILE-TYPE;
-- PUTLINE : FILETYPE;
-- Mbx_Write : FILE_TYPE;
-- PUTLINE FILETYPE;
-- PUT_LINE FILETYPE;
-- MbxRead FILETYPE;
-- PUTLINE FILETYPE;
-- PUTLINE FILE-TYPE;
-- Mbx_Write : FILE-TYPE;
-- PACKAGE HELI_PROCPACKAGE
-- PROCEDURE CLOCK (1) ;
-- PROCEDURE DISPLAY (1
-- PROCEDURE PARSER (1
-- PROCEDURE SIMULATE (1
-- EXAMPLEHELI_10_MBXP 3
-- EXAMPLEHELISIMMBXP :3;

-- END UNDCL_SYMREC
"-- "The Avionics system contains the pieces necessary to"
-- "simulate a helicopter fly-to-point real-time routine"
-- " utilizing a series of tasks."
-- SYSTEM : HELI_MAILBOXING
-- SYSTEM : HELIPROCEDURES
-- SYSTEM : HELICOPTER

, Tnu, Apr 28 1994 09:37:08 Commentsfor: HeI.Mailboxing (1.1) Page 1

The Heli_Mailboxing system contains all the componenets
related to message passing among the excuting tasks.

Software Unit: HeliMailboxing (1.1)

W WedsApr 27, 1994 16:36:25 HELMAILBOXING 1.1 (SWU Ada) Page 1

-- SYSTEM : HELIjMAILBOXING(l.1)
-- UNDCL_SYMREC

- PACKAGE CNF-PACKAGE
-- PACKAGE TEXT-IO

-- END UNDCLSYMREC
-- SYSTEM : HELIMAILBOXING

"-- "The HeliMailboxing r;stem contains all the componenets"
-- " related to message passing among the excuting tasks."
-- SYSTEM : HELI_MBX_WITH_AND_USE
PACKAG: HELIMBXPACKAGE IS

CONF_NAME : STRING(l..4) "HELI"
MAXD : NATURAL:=7 ;
TASK TYPE EXAMPLEHELIIO_MBX IS

ENTRY QTEST (STATUS : OUT INTEGER
ENTRY SEND (MSG : IN STRING) ;
ENTRY RECEIVE (MSG : OUT STRING

END EXAMPLEHELI_IO_MBX ;
TYPE AEXAMPLEHELIIOMBX IS ACCESS EXAMPLEHELIIOMBX
EXAMPLEHELI 10_MBXP : A_EXAMPLEHELI:IO MBX
TASK TYPE EXAMPLEHELISIM_MBX IS

ENTRY QTEST (STATUS : OUT INTEGER
ENTRY SEND (MSG : IN STRING) ;
ENTRY RECEIVE (MSG : OUT STRING

END EXAMPLE_HELISIMMBX ;
TYPE AEXAMPLE_HELI_SIM_MBX IS ACCESS EXAMPLEHELISIMMBX
EXAMPLE_HELI_SIMMBXP : A_EXAMPLEHELI_SIMMBX

END HELI_MBX_PACKAGE ;
-- SYSTEM : HELI_MBXPACKAGE

Best
Avai~lable

Copy

